Enabling Secure Communication in Wireless Body Area Networks with Heterogeneous Authentication Scheme

Author:

Ullah Insaf1,Khan Muhammad Asghar1ORCID,Abdullah Ako Muhammad23ORCID,Noor Fazal4ORCID,Innab Nisreen5ORCID,Chen Chien-Ming6ORCID

Affiliation:

1. Hamdard Institute of Engineering & Technology, Islamabad 44000, Pakistan

2. Computer Science Department, College of Basic Education, University of Sulaimani, Sulaimaniyah 00964, Kurdistan Region, Iraq

3. Department of Information Technology, University College of Goizha, Sulaimaniyah 00964, Kurdistan Region, Iraq

4. Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah 400411, Saudi Arabia

5. Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia

6. College of Computer Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

Thanks to the widespread availability of Fifth Generation (5G) wireless connectivity, it is now possible to provide preventative or proactive healthcare services from any location and at any time. As a result of this technological improvement, Wireless Body Area Networks (WBANs) have emerged as a new study of research in the field of healthcare in recent years. WBANs, on the one hand, intend to gather and monitor data from the human body and its surroundings; on the other hand, biomedical devices and sensors interact through an open wireless channel, making them exposed to a range of cyber threats. However, WBANs are a heterogeneous-based system; heterogeneous cryptography is necessary, in which the transmitter and receiver can employ different types of public key cryptography. This article proposes an improved and efficient heterogeneous authentication scheme with a conditional privacy-preserving strategy that provides secure communication in WBANs. In the proposed scheme, we employed certificateless cryptography on the client side and Identity-Based Cryptography on the receiver side. The proposed scheme employs Hyperelliptic Curve Cryptography (HECC), a more advanced variation of Elliptic Curve Cryptography (ECC). HECC achieves the same level of security with a smaller key size and a more efficient approach than its counterpart methods. The proposed scheme not only meets the security and privacy standards of WBANs but also enhances efficiency in terms of computation and communication costs, according to the findings of the security and performance analysis.

Funder

AlMaarefa University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3