Ultrafast Photocarrier Dynamics in Vertically Aligned SnS2 Nanoflakes Probing with Transient Terahertz Spectroscopy

Author:

Zhang Wenjie,Sun Kaiwen,Suo Peng,Yan Xiaona,Lin Xian,Jin Zuanming,Ma GuohongORCID

Abstract

By employing optical pump Terahertz (THz) probe spectroscopy, ultrafast photocarrier dynamics of a two-dimensional (2D) semiconductor, SnS2 nanoflake film, has been investigated systematically at room temperature. The dynamics of photoexcitation is strongly related to the density of edge sites and defects in the SnS2 nanoflakes, which is controllable by adjusting the height of vertically aligned SnS2 during chemical vapor deposition growth. After photoexcitation at 400 nm, the transient THz photoconductivity response of the films can be well fitted with bi-exponential decay function. The fast and slow processes are shorter in the thinner film than in the thicker sample, and both components are independent on the pump fluence. Hereby, we propose that edge-site trapping as well as defect-assisted electron-hole recombination are responsible for the fast and slow decay progress, respectively. Our experimental results demonstrate that the edge sites and defects in SnS2 nanoflakes play a dominant role in photocarrier relaxation, which is crucial in understanding the photoelectrochemical performance of SnS2 nanoflakes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3