Abstract
Amphotericin B is an antifungal drug used for the treatment of invasive fungal infections. However, its clinical use is limited due to its serious side effects, such as renal and cardiovascular toxicity. Furthermore, amphotericin B is administered in high doses due to its poor water solubility. Hence, it is necessary to develop an on-demand release strategy for the delivery of amphotericin B to reduce cytotoxicity. The present report describes a novel encapsulation of amphotericin B into lipase-sensitive polycaprolactone to form a nanocomposite. Nanocomposites were produced by the oil-in-water method and their physicochemical properties such as size, hydrodynamic diameter, drug loading, and zeta potential were determined. The in vitro release of amphotericin B was characterized in the presence and absence of lipase. The antifungal activity of the nanocomposites was verified against lipase-secreting Candida albicans, and cytotoxicity was tested against primary human dermal fibroblasts. In the absence of lipase, the release of amphotericin B from the nanocomposites was minimal. However, in the presence of lipase, an enzyme that is abundant at infection sites, a fungicidal concentration of amphotericin B was released from the nanocomposites. The antifungal activity of the nanocomposites showed an enhanced effect against the lipase-secreting fungus, Candida albicans, in comparison to the free drug at the same concentration. Furthermore, nanoencapsulation significantly reduced amphotericin B-related cytotoxicity compared to the free drug. The synthesized nanocomposites can serve as a potent carrier for the responsive delivery of amphotericin B in antifungal applications.
Subject
General Materials Science,General Chemical Engineering
Reference47 articles.
1. Bongomin, F., Gago, S., Oladele, R.O., and Denning, D.W. (2017). Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi, 3.
2. Detection and Control of Fungal Outbreaks;Caceres;Mycopathologia,2020
3. Fungal infections in humans: The silent crisis;Kainz;Microb. Cell,2020
4. Tackling the emerging threat of antifungal resistance to human health;Fisher;Nat. Rev. Genet.,2022
5. Candida Infections, Causes, Targets, and Resistance Mechanisms: Traditional and Alternative Antifungal Agents;Spampinato;BioMed Res. Int.,2013
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献