Self-Healing, Solvent-Free, Anti-Corrosion Coating Based on Skin-like Polyurethane/Carbon Nanotubes Composites with Real-Time Damage Monitoring

Author:

Kong Hui,Luo Xiaomin,Zhang Peng,Feng Jianyan,Li Pengni,Hu Wenjie,Wang Xuechuan,Liu Xinhua

Abstract

Self-healing anti-corrosion materials are widely regarded as a promising long-term corrosion protection strategy, and this is even more significant if the damage can be monitored in real-time and consequently repaired. Inspired by the hierarchical structure of human skin, self-healing, solvent-free polyurethane/carbon nanotubes composites (SFPUHE-HTF-CNTs) with a skin-like bilayer structure were constructed. The SFPUHE-HTF-CNTs were composed of two layers, namely, a hydrophobic solvent-free polyurethane (SFPUHE-HTF) containing disulfide bonds and fluorinated polysiloxane chain segments consisting of a self-healing layer and CNTs with good electrical conductivity consisting of a corrosion protection layer, which also allowed for the real-time monitoring of damage. The results of corrosion protection experiments indicated that the SFPUHE-HTF-CNTs had a low corrosion current density (8.94 × 10−9 A·cm−2), a positive corrosion potential (−0.38 V), and a high impedance modulus (|Z| = 4.79 × 105 Ω·cm2). The impedance modulus could still reach 4.54 × 104 Ω·cm2 after self-healing, showing excellent self-healing properties for anti-corrosion protection. Synchronously, the SFPUHE-HTF-CNTs exhibited a satisfactory damage sensing performance, enabling the real-time monitoring of fractures at different sizes. This work realized the effective combination of self-healing with corrosion protection and damage detection functions through a bionic design, and revealed the green, and low-cost preparation of advanced composites, which have the advantage of scale production.

Funder

National Natural Science Foundation of China

National Natural Science Youth Fund Project

Post-doctorate program of China

Science and Technology Research Project of Xianyang City

Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3