Abstract
A graphene oxide (GO/CdS) nanocomposite was synthesized by an in situ hydrothermal process and studied to develop a micro solid phase extraction procedure. Microscopic and spectroscopic characterizations have confirmed the successful preparation of the GO/CdS composite. The prepared nanocomposite selectively extracts Hg(II) ions from various water samples (tap, river, and groundwater). The intriguing characteristic of GO sheets is to provide exceptional hydrophilicity and Hg(II) accessibility to surface-decorated CdS nanoparticles. The GO/CdS nanocomposite shows excellent extraction of trace Hg(II) in a short interval of time. Computations based on density functional theory (DFT) suggest that energetically favorable multinuclear S-Hg binding leads to rapid adsorption with high sorption capacity at GO/CdS sites. The analytical features of merit suggested that the developed method has a low detection limit (0.07 µg L−1) and shows good accuracy and precision (with RSD 3.5%; N = 5). The developed method was verified by analyzing SRM 1641d (Standard Reference Material) and real samples after spiking to a predetermined amount.
Funder
Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia
Subject
General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献