Enhancement of Resistive Switching Performance in Hafnium Oxide (HfO2) Devices via Sol-Gel Method Stacking Tri-Layer HfO2/Al-ZnO/HfO2 Structures

Author:

Xu Yuan-Dong,Jiang Yan-Ping,Tang Xin-GuiORCID,Liu Qiu-Xiang,Tang ZhenhuaORCID,Li Wen-Hua,Guo Xiao-Bin,Zhou Yi-Chun

Abstract

Resistive random-access memory (RRAM) is a promising candidate for next-generation non-volatile memory. However, due to the random formation and rupture of conductive filaments, RRMS still has disadvantages, such as small storage windows and poor stability. Therefore, the performance of RRAM can be improved by optimizing the formation and rupture of conductive filaments. In this study, a hafnium oxide-/aluminum-doped zinc oxide/hafnium oxide (HfO2/Al-ZnO/HfO2) tri-layer structure device was prepared using the sol–gel method. The oxygen-rich vacancy Al-ZnO layer was inserted into the HfO2 layers. The device had excellent RS properties, such as an excellent switch ratio of 104, retention of 104 s, and multi-level storage capability of six resistance states (one low-resistance state and five high-resistance states) and four resistance states (three low-resistance states and one high-resistance state) which were obtained by controlling stop voltage and compliance current, respectively. Mechanism analysis revealed that the device is dominated by ohmic conduction and space-charge-limited current (SCLC). We believe that the oxygen-rich vacancy concentration of the Al-ZnO insertion layer can improve the formation and rupture behaviors of conductive filaments, thereby enhancing the resistive switching (RS) performance of the device.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3