Recent Progress in Halide Perovskite Nanocrystals for Photocatalytic Hydrogen Evolution

Author:

Zhang ZhijieORCID,Zhou Rui,Li Deben,Jiang Ying,Wang Xuesheng,Tang Huiling,Xu Jiayue

Abstract

Due to its environmental cleanliness and high energy density, hydrogen has been deemed as a promising alternative to traditional fossil fuels. Photocatalytic water-splitting using semiconductor materials is a good prospect for hydrogen production in terms of renewable solar energy utilization. In recent years, halide perovskite nanocrystals (NCs) are emerging as a new class of fascinating nanomaterial for light harvesting and photocatalytic applications. This is due to their appealing optoelectronic properties, such as optimal band gaps, high absorption coefficient, high carrier mobility, long carrier diffusion length, etc. In this review, recent progress in halide perovskite NCs for photocatalytic hydrogen evolution is summarized. Emphasis is given to the current strategies that enhance the photocatalytic hydrogen production performance of halide perovskite NCs. Some scientific challenges and perspectives for halide perovskite photocatalysts are also proposed and discussed. It is anticipated that this review will provide valuable references for the future development of halide perovskite-based photocatalysts used in highly efficient hydrogen evolution.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Shanghai Institute of Technology

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3