Abstract
The classical Bardeen–Cooper–Schrieffer and Eliashberg theories of the electron–phonon-mediated superconductivity are based on the Migdal theorem, which is an assumption that the energy of charge carriers, kBTF, significantly exceeds the phononic energy, ℏωD, of the crystalline lattice. This assumption, which is also known as adiabatic approximation, implies that the superconductor exhibits fast charge carriers and slow phonons. This picture is valid for pure metals and metallic alloys because these superconductors exhibit ℏωDkBTF<0.01. However, for n-type-doped semiconducting SrTiO3, this adiabatic approximation is not valid, because this material exhibits ℏωDkBTF≅50. There is a growing number of newly discovered superconductors which are also beyond the adiabatic approximation. Here, leaving aside pure theoretical aspects of nonadiabatic superconductors, we classified major classes of superconductors (including, elements, A-15 and Heusler alloys, Laves phases, intermetallics, noncentrosymmetric compounds, cuprates, pnictides, highly-compressed hydrides, and two-dimensional superconductors) by the strength of nonadiabaticity (which we defined by the ratio of the Debye temperature to the Fermi temperature, TθTF). We found that the majority of analyzed superconductors fall into the 0.025≤TθTF≤0.4 band. Based on the analysis, we proposed the classification scheme for the strength of nonadiabatic effects in superconductors and discussed how this classification is linked with other known empirical taxonomies in superconductivity.
Funder
Ministry of Science and Higher Education of the Russian Federation
MDPI
Subject
General Materials Science,General Chemical Engineering
Reference112 articles.
1. Theory of superconductivity;Bardeen;Phys. Rev.,1957
2. Interaction between electrons and lattice vibrations in a normal metal;Migdal;Sov. Phys. JETP,1958
3. Interactions between electrons and lattice vibrations in a superconductor;Eliashberg;Sov. Phys. JETP,1960
4. Nonadiabatic superconductivity. I. Vertex corrections for the electron-phonon interactions;Pietronero;Phys. Rev. B,1995
5. Poole, C.P. (1999). Handbook of Superconductivity, Academic Press. [1st ed.].
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献