Efficient Removal of Ciprofloxacin from Contaminated Water via Polystyrene Anion Exchange Resin with Nanoconfined Zero-Valent Iron

Author:

Song Yaqin,Zeng Ying,Jiang Ting,Chen Jianqiu,Du Qiong

Abstract

Ciprofloxacin (CIP), an important emerging contaminant, has been frequently detected in water, and its efficient removal has become an issue of great concern. In this study, a nanocomposite material nZVI/PA was synthesized by impregnating nanoscale zero-valent iron (nZVI) inside a millimeter-sized porous host (polystyrene-based anion exchange resin (PA)) for CIP removal. The nZVI/PA composite was characterized by field emission scanning electron microscopy coupled with energy-dispersive X-ray, transmission electron microscopy, X-ray diffraction, as well as X-ray photoelectron spectroscopy, and it was confirmed that nZVI was uniformly dispersed in PA with a small particle size. Furthermore, several key factors were investigated including initial solution pH, initial CIP concentration, co-existing ions, organic ligands, and dissolved oxygen. The experimental results indicated that the nZVI/PA composites exhibited a high removal efficiency for CIP under the conditions of initial pH 5.0, and initial CIP concentration 50 mg L−1 at 25 °C, with the maximum removal rate of CIP reaching 98.5%. Moreover, the nZVI/PA composites exhibited high efficiency even after five cycles. Furthermore, quenching tests and electron spin resonance (ESR) confirmed that CIP degradation was attributed to hydroxyl (·OH) and superoxide radicals (⋅O2−). Finally, the main degradation products of CIP were analyzed, and degradation pathways including the hydroxylation of the quinolone ring, the cleavage of the piperazine ring, and defluorination were proposed. These results are valuable for evaluating the practical application of nZVI/PA composites for the removal of CIP and other fluoroquinolone antibiotics.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Open Foundation of State Key Laboratory of Pollution Control and Resource Reuse

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3