Long-Term Antifogging Coating Based on Black Phosphorus Hybrid Super-Hydrophilic Polymer Hetero-Network

Author:

Wu LieORCID,Kang Yihong,Deng Yuhao,Yang Fan,He Rui,Yu Xue-FengORCID

Abstract

The antifogging coating based on super-hydrophilic polymer is regarded as the most promising strategy to avoid fogging but suffers from short-term effectiveness due to antifogging failure induced by water invasion. In this study, a black phosphorus nanosheets (BPs) hybrid polymer hetero-network coating (PUA/PAHS/BPs HN) was prepared by UV curing for the first time to achieve long-term antifogging performance. The polymer hetero-network (HN) structure was composed of two novel cross-linked acrylic resin and polyurethane acrylate. Different from physical blending, a covalent P-C bond between BPs and polymer is generated by UV initiated free radical reaction, resulting in BPs firmly embedded in the polymer HN structure. The BPs enriched on the coating surface by UV regulating migration prevent permeation of water towards the inside of the coating through its own good water-based lubricity and water absorption capacity. Compared with the nonhybrid polymer HN, PUA/PAHS/BPs HN not only has higher hardness and better friction resistance properties, but also exhibits superior water resistance and longer antifogging duration. Since water invasion was greatly reduced by BPs, the PUA/PAHS/BPs HN coating maintained antifogging duration for 60 min under a 60 °C water vapor test and still maintained long-term antifogging performance after being immersed in water for 5 days.

Funder

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Basic Research Foundation

Shenzhen Science and Technology Program

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3