Simulation and Optimization of CNTs Cold Cathode Emission Grid Structure

Author:

Zhang Yang,Liu Xinchuan,Zhao Liye,Li Yuanxun,Li Zhenjun

Abstract

Carbon nanotubes (CNTs) show significant advantages in the development of cold cathode X-ray tubes due to their excellent field emission performance; however, there are still some problems, such as short lifetime and the low emission current of large-area CNTs. In this paper, a front-grid carbon nanotube array model was established, and the electric field intensity near the tip of the CNTs’ electric field enhancement factor was analytically calculated. A simulation model of a CNT three-dimensional field emission electron gun was established by using computer simulation technology (CST). The effects of grid wire diameter, grid aperture shape, and the distribution of grid projection on the cathode surface on the cathode current, anode current, and electron transmission efficiency were analyzed. The aperture ratio was used to evaluate the grid performance, and the simulation results show that the ideal aperture ratio should be between 65% and 85%. A grid structure combining a coarse grid and a fine grid was designed, which can make the electric field intensity around the grid evenly distributed, and effectively increased the cathode emission current by 24.2% compared with the structure without the fine grid. The effect of grid aperture ratio on the electron transmission efficiency was tested. The simulation results and optimized structure can provide a reference for the grid design of cold cathode emission X-ray tubes.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Key Area Research Development Program of Guangdong Province

GBA National Institute for Nanotechnology Innovation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3