Novel Colloidal Dispersing Concept in Aqueous Media for Preparation by Wet-Jet Milling Dispersing Method

Author:

Kato HaruhisaORCID,Nakamura Ayako

Abstract

Dispersing particles in a liquid phase is significant for producing various functional nano/bio applications. The wet-jet milling method has been gaining attention as an attractive dispersing method in the preparation of soft material suspensions. This is because the main driving force of dispersion by the wet-jet milling method is the shear force, which is weaker than that it is in the ultrasonication dispersing method. In the wet-jet milling method, the pressure of the narrow channel which the liquid is passes through and the number of passes are used as the control parameters for dispersing the particles. However, the values of the pressure depend on the size (diameter and length) of the narrow channel, thus, it is not a commonly used dispersing parameter in dispersing by wet-jet milling to set the dispersing condition by various wet-jet milling instruments. In addition, wet-jet milling users must optimize the dispersing conditions such as the pressure and number of passes in the narrow channel, therefore, a simple prediction/optimization method of the dispersing size by the wet-jet milling method is desired. In this study, we established a novel colloidal dispersing concept, the dispersing energy input based on a calorimetric idea, for particle suspension preparation using the wet-jet milling method. The dispersing energy input by wet-jet milling was quantitatively calculated under various conditions during the dispersing by wet-jet milling, and then, the dispersing size of the particles was easily predicted/optimized. We demonstrated the usability of the concept by preparing aqueous suspensions of calcium carbonate (CaCO3) particles with various surfactants using the wet-jet milling method. Based on the established concept, in a case study on dispersing CaCO3, we found that changes in the micelle sizes of the surfactants played a role in wet-jet milling. The novel idea of the representation of energy input makes it possible to estimate the appropriate condition of the dispersing process by wet-jet milling to control the size of particles.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3