Research on In Situ Thermophysical Properties Measurement during Heating Processes

Author:

Xu Chenfei,Xu ShenORCID,Zhang Zhi,Lin HuanORCID

Abstract

Biomass pyrolysis is an important way to produce biofuel. It is a chemical reaction process significantly involving heat, in which the heating rate will affect the yield and composition (or quality) of the generated biofuel. Therefore, the heat transfer inside the biomass pellets is important for determining the rate of temperature rise in the pellets. The accurate knowledge of the thermophysical properties of biomass pellets is required to clarify the process and mechanism of heat transfer in the particles and in the reactor. In this work, based on the transient thermoelectric technology, a continuous in situ thermal characterization method for a dynamic heating process is proposed. Multiple thermophysical properties, including thermal conductivity and volumetric heat capacity for corn leaves, are measured simultaneously within a heating process. In temperatures lower than 100 °C, the volumetric heat capacity slightly increases while the thermal conductivity decreases gradually due to the evaporation of water molecules. When the temperature is higher than 100 °C, the organic components in the corn leaves are cracked and carbonized, leading to the increase in the thermal conductivity and the decrease in the volumetric heat capacity against temperature.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference25 articles.

1. Biomass-based energy fuel through biochemical routes: A review;Saxena;Renew. Sustain. Energy Rev.,2009

2. Pyrolysis oil an emerging alternate fuel for future (Review);Wankhade;J. Pharmacogn. Phytochem.,2017

3. Sustainable biofuel production from forestry, agricultural and waste biomass feedstocks;Whalen;Appl. Energy,2017

4. Sources of Biomass Feedstock Variability and the Potential Impact on Biofuels Production;Williams;Bioenergy Res.,2016

5. Top ten fundamental challenges of biomass pyrolysis for biofuels;Mettler;Energy Environ. Sci.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3