Reconfigurable, Stretchable Strain Sensor with the Localized Controlling of Substrate Modulus by Two-Phase Liquid Metal Cells

Author:

Mao Linna,Pan TaisongORCID,Guo Junxiong,Ke YizhenORCID,Zhu Jia,Cheng HuanyuORCID,Lin Yuan

Abstract

Strain modulation based on the heterogeneous design of soft substrates is an effective method to improve the sensitivity of stretchable resistive strain sensors. In this study, a novel design for reconfigurable strain modulation in the soft substrate with two-phase liquid cells is proposed. The modulatory strain distribution induced by the reversible phase transition of the liquid metal provides reconfigurable strain sensing capabilities with multiple combinations of operating range and sensitivity. The effectiveness of our strategy is validated by theoretical simulations and experiments on a hybrid carbonous film-based resistive strain sensor. The strain sensor can be gradually switched between a highly sensitive one and a wide-range one by selectively controlling the phases of liquid metal in the cell array with a external heating source. The relative change of sensitivity and operating range reaches a maximum of 59% and 44%, respectively. This reversible heterogeneous design shows great potential to facilitate the fabrication of strain sensors and might play a promising role in the future applications of stretchable strain sensors.

Funder

the Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3