Boxcar Averaging Scanning Nonlinear Dielectric Microscopy

Author:

Yamasue Kohei,Cho Yasuo

Abstract

Scanning nonlinear dielectric microscopy (SNDM) is a near-field microwave-based scanning probe microscopy method with a wide variety of applications, especially in the fields of dielectrics and semiconductors. This microscopy method has often been combined with contact-mode atomic force microscopy (AFM) for simultaneous topography imaging and contact force regulation. The combination SNDM with intermittent contact AFM is also beneficial for imaging a sample prone to damage and using a sharp microscopy tip for improving spatial resolution. However, SNDM with intermittent contact AFM can suffer from a lower signal-to-noise (S/N) ratio than that with contact-mode AFM because of the shorter contact time for a given measurement time. In order to improve the S/N ratio, we apply boxcar averaging based signal acquisition suitable for SNDM with intermittent contact AFM. We develop a theory for the S/N ratio of SNDM and experimentally demonstrate the enhancement of the S/N ratio in SNDM combined with peak-force tapping (a trademark of Bruker) AFM. In addition, we apply the proposed method to the carrier concentration distribution imaging of atomically thin van der Waals semiconductors. The proposed method clearly visualizes an anomalous electron doping effect on few-layer Nb-doped MoS2. The proposed method is also applicable to other scanning near-field microwave microscopes combined with peak-force tapping AFM such as scanning microwave impedance microscopy. Our results indicate the possibility of simultaneous nanoscale topographic, electrical, and mechanical imaging even on delicate samples.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3