Generation of Pure Green Up-Conversion Luminescence in Er3+ Doped and Yb3+-Er3+ Co-Doped YVO4 Nanomaterials under 785 and 975 nm Excitation

Author:

Stopikowska Natalia,Runowski MarcinORCID,Woźny Przemysław,Lis Stefan,Du Peng

Abstract

Materials that generate pure, single-color emission are desirable in the development and manufacturing of modern optoelectronic devices. This work shows the possibility of generating pure, green up-conversion luminescence upon the excitation of Er3+-doped nanomaterials with a 785 nm NIR laser. The up-converting inorganic nanoluminophores YVO4: Er3+ and YVO4: Yb3+ and Er3+ were obtained using a hydrothermal method and subsequent calcination. The synthesized vanadate nanomaterials had a tetragonal structure and crystallized in the form of nearly spherical nanoparticles. Up-conversion emission spectra of the nanomaterials were measured using laser light sources with λex = 785 and 975 nm. Importantly, under the influence of the mentioned laser irradiation, the as-prepared samples exhibited bright green up-conversion luminescence that was visible to the naked eye. Depending on the dopant ions used and the selected excitation wavelengths, two (green) or three (green and red) bands originating from erbium ions appeared in the emission spectra. In this way, by changing the UC mechanisms, pure green luminescence of the material can be obtained. The proposed strategy, in combination with various single-doped UC nanomaterials activated with Er3+, might be beneficial for modern optoelectronics, such as light-emitting diodes with a rich color gamut for back-light display applications.

Funder

National Science Center

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3