Colloidal Processing of Mn3O4-Carbon Nanotube Nanocomposite Electrodes for Supercapacitors

Author:

Yang Wenjuan,Zhitomirsky IgorORCID

Abstract

This investigation addresses the challenges in the development of efficient nanostructured Mn3O4 cathodes for supercapacitors. A high areal capacitance and the ability to avoid a time-consuming activation procedure for electrodes with high active mass loading of 40 mg cm−2 are reported. This facilitates practical applications of Mn3O4 based electrodes. The highest capacitance of 6.11 F cm−2 (153 F g−1) is obtained from cyclic voltammetry at a scan rate of 2 mV s−1 and 6.07 F cm−2 (151.9 F g−1) from the chronopotentiometry at a current density of 3 mA cm−2 in a potential window of 0.9 V in a neutral Na2SO4 electrolyte. The new approach is based on the application of rhamnolipids (RL) as a capping agent for the synthesis of Mn3O4 particles and a co-dispersant for Mn3O4 and carbon nanotubes, which are used as conductive additives. The size and shape of the Mn3O4 particles are influenced by RL. The enhanced performance of the electrodes is linked to the chemical structure and properties of RL molecules, which exert influence on Mn3O4 particle size and shape during synthesis, reduce agglomeration, facilitate RL adsorption on Mn3O4 and carbon nanotubes, and influence their co-dispersion and mixing at the nanometric scale.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3