Long-Term Fluorescence Behavior of CdSe/ZnS Quantum Dots on Various Planar Chromatographic Stationary Phases

Author:

Zarzycki PawełORCID

Abstract

Nanoparticles, particularly quantum dots (QDs), are commonly used for the sensitive detection of various objects. A number of target molecules may be determined using QDs sensing systems. Depending on their chemical nature, physicochemical properties, and spatial arrangement, QDs can selectively interact with given molecules of interest. This can be performed in complex systems, including microorganisms or tissues. Efficient fluorescence enables low exposure of QDs and high sensitivity for detection. One disadvantage of quantum dots fluorophores is fluorescence decay. However, for given applications, this property may be an advantage, e.g., for highly sensitive detection based on correlation images in the time domain. This experimental work deals with the measurement of fluorescence decay of Lumidot TMCdSe/ZnS (530 nm) quantum dots. These nanoparticles were transferred to the surface of various planar chromatographic stationary phases. Fluorescence of formed spots was recorded at room temperature over a long period of time, namely 15.7824 × 105 min (three years). The resulting signal profiles in the time domain were analyzed using classical approach (luminescence model comparison involving different mathematical models).Moreover, fluorescence behavior on different TLC/HPTLC supports was investigated using multivariate statistics (principal component analysis, PCA). Eight planar chromatographic stationary phases were investigated, including cellulose, octadecylsilane, polyamide, silica gel and aluminium oxide in different forms (TLC and HPTLC types). The presented research revealed significantly different and non-linear long-term QDs behavior on these solids. Two different fluorescence signal trajectories were recorded, including typical signal decay after QDs application to the plates and long-term intensity increase. This was particularly visible for given planar chromatographic adsorbents, e.g., cellulose or octadecylsilane. To the author’s knowledge, these findings were not reported before using the stationary chromatographic phases, and enable the design of future experiments toward sensing of low molecular mass chemicals using, e.g., advanced quantification approaches. This may include signal processing computations based on correlation images in the time domain. Additionally, the reported preliminary data indicates that the investigated nanoparticles can be applied as efficient and selective fluorophores. This was demonstrated on micro-TLC plates where separated bioactive organic substances quenching from cyanobacteria extracts were sensitively detected. The described detection protocol can be directly applied for different planar chromatographic systems, including paper-based microfluidic devices, planar electrophoresis and/or miniaturized microfluidic chip devices.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3