A Facile Pre-Lithiated Strategy towards High-Performance Li2Se-LiTiO2 Composite Cathode for Li-Se Batteries

Author:

Xia YangORCID,Fang Zheng,Lu ChengweiORCID,Xiao Zhen,He Xinping,Gan Yongping,Huang Hui,Wang Guoguang,Zhang WenkuiORCID

Abstract

Conventional lithium-ion batteries with a limited energy density are unable to assume the responsibility of energy-structure innovation. Lithium-selenium (Li-Se) batteries are considered to be the next generation energy storage devices since Se cathodes have high volumetric energy density. However, the shuttle effect and volume expansion of Se cathodes severely restrict the commercialization of Li-Se batteries. Herein, a facile solid-phase synthesis method is successfully developed to fabricate novel pre-lithiated Li2Se-LiTiO2 composite cathode materials. Impressively, the rationally designed Li2Se-LiTiO2 composites demonstrate significantly enhanced electrochemical performance. On the one hand, the overpotential of Li2Se-LiTiO2 cathode extremely decreases from 2.93 V to 2.15 V. On the other hand, the specific discharge capacity of Li2Se-LiTiO2 cathode is two times higher than that of Li2Se. Such enhancement is mainly accounted to the emergence of oxygen vacancies during the conversion of Ti4+ into Ti3+, as well as the strong chemisorption of LiTiO2 particles for polyselenides. This facile pre-lithiated strategy underscores the potential importance of embedding Li into Se for boosting electrochemical performance of Se cathode, which is highly expected for high-performance Li-Se batteries to cover a wide range of practical applications.

Funder

Zhejiang Provincial Natural Science Foundation

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Zhejiang Provincial Special Support Program for High-level Talents

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3