Abstract
The incorporation of functional groups endows graphene oxide (GO) with different surface charges, which plays important roles in biological interactions with cells. However, the effect of surface charge of GO derivatives on ocular biocompatibility has not been fully elucidated. Previously, we found that positively, negatively and neutrally charged PEGylated GO (PEG-GO) nanosheets exerted similar effect on the viability of ocular cells. In this work, we performed in vitro and in vivo studies to comprehensively study the effect of surface charge of PEG-GO on ocular compatibility. The in vitro results showed that the cellular uptake efficacy of negatively charged PEG-GO nanosheets was significantly decreased compared with positively charged and neutrally charged analogs. However, three kinds of PEG-GO nanosheets produced similar amounts of intracellular reactive oxygen species and showed similar influence on mitochondrial membrane potential. By analysis of global gene expression profiles, we found that the correlation coefficients between three kinds of PEG-GO-treated cells were more than 0.98. Furthermore, in vivo results showed that all these PEG-GO nanosheets had no significant toxicity to ocular structure and function. Taken together, our work suggested that surface charge of PEG-GO exerted negligible effect on its ocular compatibility, except for the cellular uptake. Our work is conducive to understanding the relationship between surface charge and biocompatibility of GO derivatives.
Funder
Foundation of Chinese PLA General Hospital
National Key Research and Development Program of China
Subject
General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献