A High-Frequency Model of a Circular Beam with a T-Shaped Cross Section

Author:

Hull Andrew,Perez Daniel

Abstract

This paper derives an analytical model of a circular beam with a T-shaped cross section for use in the high-frequency range, defined here as approximately 1 to 50 kHz. The T-shaped cross section is composed of an outer web and an inner flange. The web in-plane motion is modeled with two-dimensional elasticity equations of motion, and the left portion and right portion of the flange are modeled separately with Timoshenko shell equations. The differential equations are solved with unknown wave propagation coefficients multiplied by Bessel and exponential spatial domain functions. These are inserted into constraint and equilibrium equations at the intersection of the web and flange and into boundary conditions at the edges of the system. Two separate cases are formulated: structural axisymmetric motion and structural non-axisymmetric motion and these results are added together for the total solution. The axisymmetric case produces 14 linear algebraic equations and the non-axisymmetric case produces 24 linear algebraic equations. These are solved to yield the wave propagation coefficients, and this gives a corresponding solution to the displacement field in the radial and tangential directions. The dynamics of the longitudinal direction are discussed but are not solved in this paper. An example problem is formulated and compared to solutions from fully elastic finite element modeling. It is shown that the accurate frequency range of this new model compares very favorably to finite element analysis up to 47 kHz. This new analytical model is about four magnitudes faster in computation time than the corresponding finite element models.

Funder

Maria Medeiros, Office of Naval Research

Publisher

MDPI AG

Reference25 articles.

1. An Analytical Model of a Curved Beam with a T-Shaped Cross Section;Hull,2017

2. An analytical model of a curved beam with a T shaped cross section

3. Stability of Thin-Walled Tubes Under Torsion;Donnell,1933

4. Nonaxially Symmetric Motions of Cylindrical Shells

5. DYNAMICS OF TRANSVERSELY VIBRATING BEAMS USING FOUR ENGINEERING THEORIES

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3