Locating Sources of Vibration with Harmonics and Pulse Signals in Industrial Machines

Author:

Valeev AnvarORCID,Kharrasov Bulat

Abstract

This paper is devoted to a new approach to condition monitoring. The main feature is an application of strain gauge analysis for geometrical locating of vibrating defects. Information about the exact geometrical location of a defect, intensity of excitation and its frequency provides accurate diagnostics. The research contains theoretical and experimental parts. Three types of defects are analyzed: defects with harmonic parameters, defects with non-harmonic periodical parameters (pulse periodic signal) and defects with non-periodical parameters (pulse non-periodical signal). For the first type, analysis of micro movements in the equipment is used. The others use triangulation; for detecting time lag of signal approaching in each sensor, an analysis of phase spectrum is used. This method can find sources of vibration/defects with pulse-like signals. An electronic board and computer program for implementation of the proposed method are developed. The electronics measure strain gauge data in real time and transmit it to a computer program. Such an approach gives new information for diagnostics and provides new opportunities for effective defect detection and condition monitoring of various machines and equipment.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Medicine,General Chemistry

Reference23 articles.

1. Operations & Maintenance Best Practices—A Guide to Achieving Operational Efficiency (Release 2.0),2004

2. Vibrational Diagnostics of Rotating Machinery Malfunctions

3. Handbook of Condition Monitoring: Techniques and Methodology;Davies,1997

4. The Shock-pulse method for the detection of damaged rolling bearings

5. A Fault Feature Extraction Method for Rolling Bearing Based on Pulse Adaptive Time-Frequency Transform

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3