BDREA Betta and Dolphin Pods Routing via Energy Scarcity Aware Protocol for Underwater Acoustic Wireless Sensor Networks (UAWSNs)

Author:

Zradgui Hamza,Ibrahimi KhalilORCID

Abstract

There exist numerous applications for deploying Underwater Wireless Sensor Networks (UWSNs), including submarine detection, disaster prevention, oil and gas monitoring, off-shore exploration, and military target tracking. The acoustic sensor nodes are deployed to monitor the underwater environment, considering the area under observation. This research work proposes an energy scarcity-aware routing protocol for energy efficient UWSNs. Moreover, it aims to find the feasible region on the basis of the objective function, in order to minimize the energy tax and extend the network life. There are three different sensors nodes in the network environment, i.e., anchor nodes, relay nodes, and the centralized station. Anchor nodes originate data packets, while relay nodes process them and broadcast between each other until the packets reach the centralized station. The underline base scheme Weighting Depth and Forwarding Area Division Depth-Based Routing (WDFAD-DBR) for routing is based on the depth differences of the first- and second-hop nodes of the source node. The propose work, Betta and Dolphin Pods Routing via Energy Scarcity Aware protocol (BDREA) for packet forwarding from the forwarding nodes considers the first and second hops of the source node, i.e., the packet advancement, the network traffic, the distance to the centralized station, and the inverse normalized energy of the forwarding zone. It is observed that the proposed work improves the performance parameters by approximately 50% in terms of energy efficiency, and prolongs the network life compared to Dolphin and Whale Pod (DOW-PR) protocols. Furthermore, the energy efficiency directly relates to the other parameters, and its enhancement can be seen in terms of an 18.02% reduction in end-to-end delay when compared with the Weighting Depth and Forwarding Area Division Depth-Based Routing (WDFAD-DBR) protocol. Furthermore, BDREA improves the Packet Delivery Ratio (PDR) by approximately 8.71%, compared to DOW-PR, and by 10% compared with the benchmark, WDFAD-DBR, the energy tax by 50% in comparison to DOW-PR, the end-to-end delay by 18%, and the APD by 5% in comparison to WDFAD-DBR.

Publisher

MDPI AG

Subject

General Medicine,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Universal Geographic Information System Productivity beneath optimum Underwater Sensor Networks Routing;IOP Conference Series: Earth and Environmental Science;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3