Ultrasonic Study of Longitudinal Critically Refracted and Bulk Waves of the Heat-Affected Zone of a Low-Carbon Steel Welded Joint under Fatigue

Author:

Gonchar Alexander1ORCID,Solovyov Alexander1ORCID,Klyushnikov Vyacheslav1ORCID

Affiliation:

1. Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), 46 Ul’yanov Street, 603950 Nizhny Novgorod, Russia

Abstract

Currently, ultrasonic methods for assessing the fatigue lifetime of various structural materials are being actively developed. Many steel constructions are made by welding. The weld heat-affected zone is the weak point of the construction, as it is most susceptible to destruction. Therefore, it is actually important to search for acoustic parameters that uniquely characterize the structural damage accumulation in the heat-affected zone of a welded joint in order to predict failure. In this work, the specimens were made from the base metal and the welded joint’s heat-affected zone. The specimens were subjected to uniaxial tension–compression under a symmetrical cycle in the region of low-cycle fatigue with control of the strain amplitude. The propagation bulk velocities of longitudinal, shear waves and subsurface longitudinal critically refracted (LCR) waves during cyclic loading were studied. The acoustic birefringence of shear waves was calculated, and a similar parameter was proposed for longitudinal and LCR waves. The dependence of the elastic modulus ratio on the cycle ratio was obtained. It was shown that the acoustic parameters change most intensively in the heat-affected zone. According to the data of the C33/C55 ratio changes measured through the ultrasonic method, a formula for calculating the remaining fatigue life in the heat-affected zone was proposed.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3