Applying New Algorithms for Numerical Integration on the Sphere in the Far Field of Sound Pressure

Author:

Piličić Stjepan1,Skoblar Ante2ORCID,Žigulić Roberto2,Traven Luka3ORCID

Affiliation:

1. Mechanical Engineering School for Industrial and Craft Profession Rijeka-Secondary School, Jože Vlahovića 10, 51000 Rijeka, Croatia

2. Department of Engineering Mechanics, Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia

3. Department of Environmental Medicine, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia

Abstract

For some sound sources, the function of the square of sound pressure amplitudes on the sphere in the far field is an integrable function or can be integrated with geometrical simplifications, so an exact or approximated analytical expression for the sound power can be calculated. However, often the sound pressure on the sphere in the far field can only be defined in discrete points, for which a numerical integration is required for the calculation of the sound power. In this paper, two new algorithms, Anchored Radially Projected Integration on Spherical Triangles (ARPIST) and Spherical Quadrature Radial Basis Function (SQRBF), for surface numerical integration are used to calculate the sound power from the sound pressures on the sphere surface in the far field, and their solutions are compared with the analytical and the finite element method solution. If function values are available at any location on a sphere, ARPIST has a greater accuracy and stability than SQRBF while being faster and easier to implement. If function values are available only at user-prescribed locations, SQRBF can directly calculate weights while ARPIST needs data interpolation to obtain function values at predefined node locations, which reduces the accuracy and increases the calculation time.

Funder

Univsersity of Rijeka

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

Subject

Acoustics and Ultrasonics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3