Enhancing Speaker Recognition Models with Noise-Resilient Feature Optimization Strategies

Author:

Chauhan Neha1ORCID,Isshiki Tsuyoshi1,Li Dongju1

Affiliation:

1. Department of Information and Communication Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan

Abstract

This paper delves into an in-depth exploration of speaker recognition methodologies, with a primary focus on three pivotal approaches: feature-level fusion, dimension reduction employing principal component analysis (PCA) and independent component analysis (ICA), and feature optimization through a genetic algorithm (GA) and the marine predator algorithm (MPA). This study conducts comprehensive experiments across diverse speech datasets characterized by varying noise levels and speaker counts. Impressively, the research yields exceptional results across different datasets and classifiers. For instance, on the TIMIT babble noise dataset (120 speakers), feature fusion achieves a remarkable speaker identification accuracy of 92.7%, while various feature optimization techniques combined with K nearest neighbor (KNN) and linear discriminant (LD) classifiers result in a speaker verification equal error rate (SV EER) of 0.7%. Notably, this study achieves a speaker identification accuracy of 93.5% and SV EER of 0.13% on the TIMIT babble noise dataset (630 speakers) using a KNN classifier with feature optimization. On the TIMIT white noise dataset (120 and 630 speakers), speaker identification accuracies of 93.3% and 83.5%, along with SV EER values of 0.58% and 0.13%, respectively, were attained utilizing PCA dimension reduction and feature optimization techniques (PCA-MPA) with KNN classifiers. Furthermore, on the voxceleb1 dataset, PCA-MPA feature optimization with KNN classifiers achieves a speaker identification accuracy of 95.2% and an SV EER of 1.8%. These findings underscore the significant enhancement in computational speed and speaker recognition performance facilitated by feature optimization strategies.

Funder

New Energy and Industrial Technology Development Organization

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3