Turbomachinery Noise Predictions: Present and Future

Author:

Moreau StéphaneORCID

Abstract

In future Ultra-High By-Pass Ratio turboengines, the turbomachinery noise (fan and turbine stages mainly) is expected to increase significantly. A review of analytical models and numerical methods to yield both tonal and broadband contributions of such noise sources is presented. The former rely on hybrid methods coupling gust response over very thin flat plates of finite chord length, either isolated or in cascade, and acoustic analogies in free-field and in a duct. The latter yields tonal noise with unsteady Reynolds-Averaged Navier–Stokes (u-RANS) simulations, and broadband noise with Large Eddy Simulations (LES). The analytical models are shown to provide good and fast first sound estimates at pre-design stages, and to easily separate the different noise sources. The u-RANS simulations are now able to give accurate estimates of tonal noise of the most complex asymmetric, heterogeneous fan-Outlet Guiding Vane (OGV) configurations. Wall-modeled LES on rescaled stage configurations have now been achieved on all components: a low-pressure compressor stage, a transonic high-pressure turbine stage and a fan-OGV configuration with good overall sound power level predictions for the latter. In this case, hybrid Lattice–Boltzmann/very large-eddy simulations also appear to be an excellent alternative to yield both contributions accurately at once.

Publisher

MDPI AG

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3