Matched Filter for Acoustic Emission Monitoring in Noisy Environments: Application to Wire Break Detection

Author:

Lange Alexander1ORCID,Xu Ronghua2,Kaeding Max3ORCID,Marx Steffen2ORCID,Ostermann Joern1

Affiliation:

1. Institut für Informationsverarbeitung, Leibniz Universitaet Hannover, 30167 Hannover, Germany

2. Institut für Massivbau, Technische Universitaet Dresden, 01219 Dresden, Germany

3. MKP GmbH, 30163 Hannover, Germany

Abstract

Regular inspections of important civil infrastructures are mandatory to ensure structural safety and reliability. Until today, these inspections are primarily conducted manually, which has several deficiencies. In context of prestressed concrete structures, steel tendons can be susceptible to stress corrosion cracking, which may result in breakage of individual wires that is visually not observable. Recent research therefore suggests Acoustic Emission Monitoring for wire break detection in prestressed concrete structures. However, in noisy environments, such as wind turbines, conventional acoustic emission detection based on user-defined amplitude thresholds may not be suitable. Thus, we propose the use of matched filters for acoustic emission detection in noisy environments and apply the proposed method to the task of wire break detection in post-tensioned wind turbine towers. Based on manually conducted wire breaks and rebound hammer tests on a large-scale test frame, we employ a brute-force search for the most suitable query signal of a wire break event and a rebound hammer impact, respectively. Then, we evaluate the signal detection performance on more than 500 other wire break signals and approximately one week of continuous acoustic emission recordings in an operating wind turbine. For a signal-to-noise ratio of 0 dB, the matched filter approach shows an improvement in AUC by up to 0.78 for both, the wire break and the rebound hammer query signal, compared to state-of-the-art amplitude-based detection. Even for the unscaled wire break measurements originally recorded at the 12 m large laboratory test frame, the improvement in AUC still lies between 0.01 and 0.25 depending on the wind turbine noise recordings considered for evaluation. Matched filters may therefore be a promising alternative to amplitude-based detection algorithms and deserve particular consideration with regard to Acoustic Emission Monitoring, especially in noisy environments or when sparse senor networks are required.

Funder

German Federal Ministry for Economic Affairs and Climate Action

Publisher

MDPI AG

Reference26 articles.

1. Costs of repair of wind turbine blades: Influence of technology aspects;Mishnaevsky;Wind Energy,2020

2. Konzepte für die Bewertung von Brücken mit Spannungsrisskorrosionsgefahr;Schacht;Beton- und Stahlbetonbau,2019

3. Nürnberger, U., and Beul, W. (1994). Untersuchungen an Verkehrsbauten aus Spannbeton zur Abschätzung des Gefährdungspotentials Infolge Spannungsrißkorrosion der Spannstähle. Teil 2-Untersuchungen der FMPA: Abschlußbericht zum BMV-Forschungsvorhaben FE 15.209 R91D (FMPA-Nr. 34-10566), Bundesanstalt für Materialforschung und-prüfung (BAM).

4. Scheerer, S., Hampel, T., and Curbach, M. (2012). Überprüfung des Risikos der Spannungsrisskorrosion (SpRK) von Hennigsdorfer Spannstahl für den Produktionszeitraum bis 1993, Forschungsbericht; Institut für Massivbau und Otto-Mohr Laboratorium der TU Dresden.

5. Liu, W., Hunsperger, R., Folliard, K., Chajes, M., Barot, J., Jhaveri, D., and Kunz, E. (1999, January 3–5). Detection and characterization of corrosion of bridge cables by time domain reflectometry. Proceedings of the SPIE Conference on Nondestructive Evaluation Techniques for Aging Infrastructures and Manufacturing, Newport Beach, CA, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3