Design of Optimal Sound Absorbers Using Acoustic Diffusers for Multipurpose Auditoriums

Author:

Pardo-Quiles Domingo1ORCID,Rodríguez-Rodríguez Ignacio2ORCID,Rodríguez José-Víctor1ORCID

Affiliation:

1. Departamento de Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, Antiguo Cuartel de Antigones, Plaza del Hospital, 1, 30202 Cartagena, Spain

2. Departamento de Ingeniería de Comunicaciones, Universidad de Málaga, Av. de Cervantes, 2, 29071 Málaga, Spain

Abstract

The main goal of this research was to design and study the best structure, location, and shape of acoustic diffusers to be fitted on the ceilings of multipurpose auditoriums. Their absorbing properties can enhance the acoustics when installed on high ceilings, and behind suspended reflecting panels, by mitigating or nullifying specular reflections that could overcome the panels and, thus, avoiding time delay gaps exceeding 30–40 ms compared with the direct sound. For this purpose, a typical medium-sized room, with inclined floors, a stage, and 20 rows of seats, was considered. The allocation and height of the considered diffusers were based on the Schroeder quadratic residue sequence, and they were modeled as rectangles, wedges, cylinders, and Y-shaped elements. A standardized speech source spectrum was analyzed for up to five different receiver locations. In this way, the attenuation parameter as a function of frequency was evaluated and compared between the candidate diffusers in order to identify the best absorber. The simulations were undertaken with a software tool previously validated by the authors called PARDOS, which incorporates an innovative formulation based on the uniform theory of diffraction (UTD) to analyze multiple diffractions and reflections of acoustic waves. The results show that the new Y-shaped diffusers proposed, tuned for the hearing frequency band from 250 Hz up to 10,000 Hz, attained the best acoustic performance in terms of absorption.

Publisher

MDPI AG

Reference71 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3