Automatic and Generic Prognosis Method Based on Data Trend Analysis and Neural Network

Author:

Diaf Youssouf,Benmoussa Samir,Djeziri Mohand

Abstract

This paper presents a generic and unsupervised failure prognosis method which can be applied to wide scope of applications. The main contribution of the presented method is automatic relevant data identification based on signal smoothing and trendability analysis and automatic degradation model identification for health indices construction, built using a trained neural network, thus allowing for the automatic adaptation of the degradation trend model to changes in the degradation dynamic. Regarding the failure prognosis, the end of life is first predicted using a fitting model; then, the remaining useful life is predicted using a similarity algorithm. The proposed approach is validated using the turbofan engine data sets provided by NASA. The prediction results have been evaluated using accuracy metrics such as root mean square error and prognostic metrics such α−λ and relative accuracy. The obtained results show the effectiveness of the proposed method, both for the end of life and remaining useful life predictions.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3