Abstract
In addition to the consumption of hot utilities, there is also a significant cost associated with the consumption of cold utilities when there is a high demand for cooling. A promising solution for cooling is an absorption chiller (AC), which uses heat instead of electricity for cooling. A thermodynamic approach for evaluating AC integrated with a process is presented in this work. A model for assessing the properties and duties of an AC cycle was developed. The integration of a combined process-AC system was evaluated using the Grand Composite Curve. Three different options of integration were analyzed: (i) above the Pinch, (ii) below the Pinch, and (iii) across the Pinch. AC represents the combined effect of a heat engine and a heat pump, as the generator together with the absorber and condenser has the function of a heat engine, while the evaporator combined with the absorber and condenser mimics the function of a heat pump. The comparison between the non-integrated and integrated process-AC systems has revealed that the proper placement of AC is across or below the Pinch and the improper is above the Pinch. If AC was entirely integrated below the Pinch, the integration would result in a complete (100%) reduction in the consumption of hot utility for the operation of AC. The most suitable placement of AC with double reduction of hot utility consumption and complete reduction of both hot and cold utility to operate AC is across the Pinch due to the pumping of heat through AC from below to above the Pinch.
Funder
Slovenian Research Agency
Ministry of Education, Science and Sport of the Republic of Slovenia
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献