Integration of an Absorption Chiller to a Process Applying the Pinch Analysis Approach

Author:

Nemet Andreja,Kravanja Zdravko,Bogataj MilošORCID

Abstract

In addition to the consumption of hot utilities, there is also a significant cost associated with the consumption of cold utilities when there is a high demand for cooling. A promising solution for cooling is an absorption chiller (AC), which uses heat instead of electricity for cooling. A thermodynamic approach for evaluating AC integrated with a process is presented in this work. A model for assessing the properties and duties of an AC cycle was developed. The integration of a combined process-AC system was evaluated using the Grand Composite Curve. Three different options of integration were analyzed: (i) above the Pinch, (ii) below the Pinch, and (iii) across the Pinch. AC represents the combined effect of a heat engine and a heat pump, as the generator together with the absorber and condenser has the function of a heat engine, while the evaporator combined with the absorber and condenser mimics the function of a heat pump. The comparison between the non-integrated and integrated process-AC systems has revealed that the proper placement of AC is across or below the Pinch and the improper is above the Pinch. If AC was entirely integrated below the Pinch, the integration would result in a complete (100%) reduction in the consumption of hot utility for the operation of AC. The most suitable placement of AC with double reduction of hot utility consumption and complete reduction of both hot and cold utility to operate AC is across the Pinch due to the pumping of heat through AC from below to above the Pinch.

Funder

Slovenian Research Agency

Ministry of Education, Science and Sport of the Republic of Slovenia

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy Optimization through Heat and Power Integration on a Chlorobenzenes Production Plant;Processes;2024-03-13

2. Using the RETScreen Software in the Analysis of Solar Air-Cooling Technology: A Case Study;Proceedings of the 2023 7th International Conference on Virtual and Augmented Reality Simulations;2023-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3