Assessment of Liquid and Solid Digestates from Anaerobic Digestion of Rice Husk as Potential Biofertilizer and Nutrient Source for Microalgae Cultivation

Author:

Olugbemide Akinola DavidORCID,Likozar BlažORCID

Abstract

The need to embrace a circular economy model for sustainable growth and development is increasing due to the rise in human population and the dwindling natural resources available to meet the demands for energy and food. In this study, anaerobic digestion of rice husk (RH) was carried out under mesophilic conditions to produce biogas and digestates. Two particle sizes (300 and 600 μm) and three dilution ratios (1:4, 1:6, and 1:8) were employed to determine the optimum conditions for biogas production. The best anaerobic digesters (300 μm/1:6 and 600 μm/1:4) in each of the categories produced a cumulative biogas of 3205 + 290 mL and 2310 + 320 mL, respectively. The digestates were separated into solid and liquid fractions and characterized to evaluate their potential as biofertilizers and nutrient sources for microalgae cultivation. The nitrogen and phosphorus contents of the solid fractions (1.00 ± 0.01 and 0.97 ± 0.04) were significantly higher (p < 0.05) than the liquid fractions whereas the liquid fractions had a higher potassium content than the solid fractions. The absence of heavy metals in the digestates confirmed their safe application as biofertilizers. The pH values of 4.70 and 5.50 reported in this study for liquid digestates are appropriate for the cultivation of some strains of microalgae that thrive in an acidic medium. The ammonium nitrogen contents of the liquid digestates (0.03% + 0.00% and 0.04% ± 0.00%) were moderate and not as high as some values reported to inhibit the growth of some species of microalgae. However, the brownish color of the liquid digestates could impair microalgae growth; thus, there is a need for dilution to increase light penetration.

Funder

Tertiary Education Trust Fund

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3