An Effective Temperature Control Method for Dividing-Wall Distillation Columns

Author:

Yuan YangORCID,Tao Xinyi,Huang Kejin,Chen Haisheng,Qian XingORCID

Abstract

Temperature control is widely perceived to be superior to direct composition control for the control of dividing-wall distillation columns (DWDCs) due to its advantages in dynamic characteristics. However, because of the limited estimation accuracy to the controlled product purities, the former cannot eliminate the steady-state errors in the maintained product purities as completely as the latter. In order to reduce the steady-state deviations in the maintained product purities, an effective temperature control method is proposed in the current article by means of a kind of simple but effective product quality estimator (PQE). For the proposed PQE, temperatures of three stages located in the controlled column section (TI1, TI2, and TI3) are employed as inputs, and a linear sum of these three inputted stage temperatures (α × TI1 + β × TI2 + γ × TI3) is given as output. A genetic algorithm with an elitist preservation strategy is used to optimize the locations of the three stage temperatures and the values of α, β, and γ to ensure the estimation accuracy of the PQE. Concerning the controls of two DWDCs, i.e., one Petlyuk DWDC separating an ethanol/propanol/butanol ternary mixture and one Kaibel DWDC separating a methanol/ethanol/propanol/butanol quaternary mixture, the effectiveness of the PQE is assessed through comparing the performance of the temperature inferential control scheme using the PQE and the double temperature difference control scheme. According to the dynamic simulation results obtained, the former control scheme displays not only smaller steady-state deviations in the maintained product purities, but also better dynamic characteristics as compared with the latter control scheme. This result fully demonstrates that the proposed PQE can be a useful tool for the temperature inferential control of the DWDC.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3