Spatiotemporal Variations of the Frequency–Magnitude Distribution in the 2019 Mw 7.1 Ridgecrest, California, Earthquake Sequence

Author:

Sardeli Eirini1,Michas Georgios1ORCID,Pavlou Kyriaki1ORCID,Vallianatos Filippos12

Affiliation:

1. Section of Geophysics-Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15772 Athens, Greece

2. Institute of Physics of Earth’s Interior and Geohazards, UNESCO Chair on Solid Earth Physics and Geohazards Risk Reduction, Hellenic Mediterranean University Research & Innovation Center, 73133 Chania, Greece

Abstract

Significant seismic activity has been witnessed in the area of Ridgecrest (Southern California) over the past 40 years, with the largest being the Mw 5.8 event on 20 September 1995. In July 2019, a strong earthquake of Mw 7.1, preceded by a Mw 6.4 foreshock, impacted Ridgecrest. The mainshock triggered thousands of aftershocks that were thoroughly documented along the activated faults. In this study, we analyzed the spatiotemporal variations of the frequency–magnitude distribution in the area of Ridgecrest using the fragment–asperity model derived within the framework of non-extensive statistical physics (NESP), which is well-suited for investigating complex dynamic systems with scale-invariant properties, multi-fractality, and long-range interactions. Analysis was performed for the entire duration, as well as within various time windows during 1981–2022, in order to estimate the qM parameter and to investigate how these variations are related to the dynamic evolution of seismic activity. In addition, we analyzed the spatiotemporal qM value distributions along the activated fault zone during 1981–2019 and during each month after the occurrence of the Mw 7.1 Ridgecrest earthquake. The results indicate a significant increase in the qM parameter when large-magnitude earthquakes occur, suggesting the system’s transition in an out-of-equilibrium phase and its preparation for seismic energy release.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3