DyLFG: A Dynamic Network Learning Framework Based on Geometry

Author:

Wu Wei1ORCID,Zhai Xuemeng2

Affiliation:

1. Changzhou College of Information Technology, Changzhou 213164, China

2. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

Dynamic network representation learning has recently attracted increasing attention because real-world networks evolve over time, that is nodes and edges join or leave the networks over time. Different from static networks, the representation learning of dynamic networks should not only consider how to capture the structural information of network snapshots, but also consider how to capture the temporal dynamic information of network structure evolution from the network snapshot sequence. From the existing work on dynamic network representation, there are two main problems: (1) A significant number of methods target dynamic networks, which only allow nodes to increase over time, not decrease, which reduces the applicability of such methods to real-world networks. (2) At present, most network-embedding methods, especially dynamic network representation learning approaches, use Euclidean embedding space. However, the network itself is geometrically non-Euclidean, which leads to geometric inconsistencies between the embedded space and the underlying space of the network, which can affect the performance of the model. In order to solve the above two problems, we propose a geometry-based dynamic network learning framework, namely DyLFG. Our proposed framework targets dynamic networks, which allow nodes and edges to join or exit the network over time. In order to extract the structural information of network snapshots, we designed a new hyperbolic geometry processing layer, which is different from the previous literature. In order to deal with the temporal dynamics of the network snapshot sequence, we propose a gated recurrent unit (GRU) module based on Ricci curvature, that is the RGRU. In the proposed framework, we used a temporal attention layer and the RGRU to evolve the neural network weight matrix to capture temporal dynamics in the network snapshot sequence. The experimental results showed that our model outperformed the baseline approaches on the baseline datasets.

Funder

General project of Institute of Higher Education of Changzhou University, Research on Digital Transformation of Higher Vocational Mathematics Education under the background of artificial Intelligence

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3