Effect of Particle Size on Current-Carrying Friction and Wear Properties of Copper-Graphite Composites by Spark Plasma Sintering

Author:

Yang Zhenghai,Ge Yuexin,Zhang Xu,Shangguan Bao,Zhang Yongzhen,Wang Yao

Abstract

Copper-graphite composites were prepared by spark plasma sintering (SPS) with copper powder and copper-coated graphite powder. The effect of particle size of raw material powder on the current-carrying friction properties of copper-graphite composites was studied. The results show that the friction coefficient of the composites decreased with the decrease of the particle size of copper-coated graphite powder, the friction coefficient of the composites increased with the decrease of the particle size of the copper powder, the wear rate of the composites increased with the decrease of the particle size of the copper-coated graphite powder, and the wear rate of the composites increased significantly with the decrease of the particle size of the copper-coated graphite powder. The current carrying properties of composites with different particle size ratios and QCr0.5 pairs are good and fluctuate little. The current-carrying friction properties of 150 μm copper powder and 75 μm copper-coated graphite powder were found to be the best. The wear surface could be divided into mechanical wear area and arc erosion area. The main area of arc erosion was less than 15% of the total area, and it was mainly distributed in the friction outlet area. The main forms of mechanical wear included furrow, rolling deformation, cold welding, and tearing, among other forms. Graphite film was formed on the surface. The surface quality of the composite prepared by 150 μm copper powder and 75 μm copper-coated graphite powder was the best, the Sa was 3.22 μm, rolling deformation was the most adequate, no large tear pit and furrow appeared, and the carbon content on the worn surface was much higher than that in the composite. The behavior of arc erosion was mainly melting and splashing, and the particle size of the original powder had little effect on it.

Funder

NSAF Joint Fund

the joint funds between Henan Provincial Government and National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3