Exploring the Pedestrian Route Choice Behaviors by Machine Learning Models

Author:

Jin Cheng-Jie12,Luo Yuanwei12,Wu Chenyang34,Song Yuchen12,Li Dawei12

Affiliation:

1. Jiangsu Key Laboratory of Urban ITS, Southeast University of China, Nanjing 210096, China

2. Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Nanjing 210096, China

3. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

4. Urban System Lab, Imperial College London, London SW7 2AZ, UK

Abstract

To investigate pedestrian route choice mechanisms from a perspective distinct from that employed in discrete choice models (DCMs), this study utilizes machine learning models and employs SHapley Additive exPlanations (SHAP) for model interpretation. The data used in this paper come from several pedestrian flow experiments with two routes, which were recorded by UAV. Our findings indicate that logistic regression (similar to a binary logit model) exhibits good computational efficiency but falls short in predictive accuracy when compared to other machine learning models. Among the 12 machine learning models assessed, by calculating the new indicator named OP, we find that eXtreme Gradient Boosting (XGB) and Light Gradient Boosting (LGB) strike the best balance between accuracy and computational efficiency. Regarding feature contribution, our analysis reveals that bottlenecks exert the most significant influence on pedestrian route choice behavior, followed by the time it takes pedestrians to return from the end of the route to the origin (reflecting pedestrian characteristics and attitudes). While the pedestrian density of the shorter route contributes less compared to bottlenecks and return time, it exhibits a threshold effect, meaning that once the density of the shorter route surpasses a certain threshold, most pedestrians opt for the longer route.

Funder

National Natural Science Foundation of China

Northwestern Polytechnical University Start-Up Funding

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3