Leveraging Transfer Learning and U-Nets Method for Improved Gap Filling in Himawari Sea Surface Temperature Data Adjacent to Taiwan

Author:

Putra Dimas Pradana1ORCID,Hsu Po-Chun12ORCID

Affiliation:

1. Center for Space and Remote Sensing Research, National Central University, Taoyuan 320317, Taiwan

2. Institute of Hydrological and Oceanic Science, National Central University, Taoyuan 320317, Taiwan

Abstract

Satellite sea surface temperature (SST) images are valuable for various oceanic applications, including climate monitoring, ocean modeling, and marine ecology. However, cloud cover often obscures SST signals, creating gaps in the data that reduce resolution and hinder spatiotemporal analysis, particularly in the waters near Taiwan. Thus, gap-filling methods are crucial for reconstructing missing SST values to provide continuous and consistent data. This study introduces a gap-filling approach using the Double U-Net, a deep neural network model, pretrained on a diverse dataset of Level-4 SST images. These gap-free products are generated by blending satellite observations with numerical models and in situ measurements. The Double U-Net model excels in capturing SST dynamics and detailed spatial patterns, offering sharper representations of ocean current-induced SST patterns than the interpolated outputs of Data Interpolating Empirical Orthogonal Functions (DINEOFs). Comparative analysis with buoy observations shows the Double U-Net model’s enhanced accuracy, with better correlation results and lower error values across most study areas. By analyzing SST at five key locations near Taiwan, the research highlights the Double U-Net’s potential for high-resolution SST reconstruction, thus enhancing our understanding of ocean temperature dynamics. Based on this method, we can combine more high-resolution satellite data in the future to improve the data-filling model and apply it to marine geographic information science.

Funder

National Science and Technology Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3