Total Least Squares Estimation in Hedonic House Price Models

Author:

Zhan Wenxi12,Hu Yu1,Zeng Wenxian1,Fang Xing1ORCID,Kang Xionghua1,Li Dawei12

Affiliation:

1. School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Rd., Wuhan 430079, China

2. Hubei Luojia Laboratory, Wuhan University, 129 Luoyu Rd., Wuhan 430079, China

Abstract

In real estate valuation using the Hedonic Price Model (HPM) estimated via Ordinary Least Squares (OLS) regression, subjectivity and measurement errors in the independent variables violate the Gauss–Markov theorem assumption of a non-random coefficient matrix, leading to biased parameter estimates and incorrect precision assessments. In this contribution, the Errors-in-Variables model equipped with Total Least Squares (TLS) estimation is proposed to address these issues. It fully considers random errors in both dependent and independent variables. An iterative algorithm is provided, and posterior accuracy estimates are provided to validate its effectiveness. Monte Carlo simulations demonstrate that TLS provides more accurate solutions than OLS, significantly improving the root mean square error by over 70%. Empirical experiments on datasets from Boston and Wuhan further confirm the superior performance of TLS, which consistently yields a higher coefficient of determination and a lower posterior variance factor, which shows its more substantial explanatory power for the data. Moreover, TLS shows comparable or slightly superior performance in terms of prediction accuracy. These results make it a compelling and practical method to enhance the HPM.

Funder

National Natural Science Foundation of China

the Special Fund of Hubei Luojia Laboratory

Publisher

MDPI AG

Reference84 articles.

1. Wen, H., Lu, J., and Lin, L. (2004, January 18–21). An improved method of real estate evaluation based on Hedonic price model. Proceedings of the 2004 IEEE International Engineering Management Conference (IEEE Cat. No. 04CH37574), Singapore.

2. The Evolution of Hedonic Pricing Models;Khoshnoud;J. Real Estate Lit.,2023

3. Geerts, M., and De Weerdt, J. (2023). A Survey of Methods and Input Data Types for House Price Prediction. ISPRS Int. J. Geo-Inf., 12.

4. Pai, P.F., and Wang, W.C. (2020). Using machine learning models and actual transaction data for predicting real estate prices. Appl. Sci., 10.

5. House Price Prediction using a Machine Learning Model: A Survey of Literature;Zulkifley;Int. J. Mod. Educ. Comput. Sci.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3