Smartphone Authentication System Using Personal Gaits and a Deep Learning Model

Author:

Choi Jiwoo1ORCID,Choi Sangil1ORCID,Kang Taewon1ORCID

Affiliation:

1. Department of Computer Science and Engineering, Gangneung-Wonju National University, Wonju 26403, Republic of Korea

Abstract

In a society centered on hyper-connectivity, information sharing is crucial, but it must be ensured that each piece of information is viewed only by legitimate users; for this purpose, the medium that connects information and users must be able to identify illegal users. In this paper, we propose a smartphone authentication system based on human gait, breaking away from the traditional authentication method of using the smartphone as the medium. After learning human gait features with a convolutional neural network deep learning model, it is mounted on a smartphone to determine whether the user is a legitimate user by walking for 1.8 s while carrying the smartphone. The accuracy, precision, recall, and F1-score were measured as evaluation indicators of the proposed model. These measures all achieved an average of at least 90%. The analysis results show that the proposed system has high reliability. Therefore, this study demonstrates the possibility of using human gait as a new user authentication method. In addition, compared to our previous studies, the gait data collection time for user authentication of the proposed model was reduced from 7 to 1.8 s. This reduction signifies an approximately four-fold performance enhancement through the implementation of filtering techniques and confirms that gait data collected over a short period of time can be used for user authentication.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3