The Combination Effect of Aspalathin and Phenylpyruvic Acid-2-O-β-d-glucoside from Rooibos against Hyperglycemia-Induced Cardiac Damage: An In Vitro Study

Author:

Dludla Phiwayinkosi V.ORCID,Muller Christo J. F.ORCID,Louw Johan,Mazibuko-Mbeje Sithandiwe E.ORCID,Tiano LucaORCID,Silvestri Sonia,Orlando Patrick,Marcheggiani Fabio,Cirilli IleniaORCID,Chellan NireshniORCID,Ghoor Samira,Nkambule Bongani B.,Essop M. Faadiel,Huisamen Barbara,Johnson RabiaORCID

Abstract

Recent evidence shows that rooibos compounds, aspalathin and phenylpyruvic acid-2-O-β-d-glucoside (PPAG), can independently protect cardiomyocytes from hyperglycemia-related reactive oxygen species (ROS). While aspalathin shows more potency by enhancing intracellular antioxidant defenses, PPAG acts more as an anti-apoptotic agent. Thus, to further understand the protective capabilities of these compounds against hyperglycemia-induced cardiac damage, their combinatory effect was investigated and compared to metformin. An in vitro model of H9c2 cardiomyocytes exposed to chronic glucose concentrations was employed to study the impact of such compounds on hyperglycemia-induced damage. Here, high glucose exposure impaired myocardial substrate utilization by abnormally enhancing free fatty acid oxidation while concomitantly suppressing glucose oxidation. This was paralleled by altered expression of genes involved in energy metabolism including acetyl-CoA carboxylase (ACC), 5′ AMP-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor-alpha (PPARα). The combination treatment improved myocardial substrate metabolism, maintained mitochondrial membrane potential, and attenuated various markers for oxidative stress including nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and glutathione content. It also showed a much-improved effect by ameliorating DNA damage when compared to metformin. The current study demonstrates that rooibos compounds offer unique cardioprotective properties against hyperglycemia-induced and potentially against diabetes-induced cardiac damage. These data also support further exploration of rooibos compounds to better assess the cardioprotective effects of different bioactive compound combinations.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3