Nighttime Light Hurts Mammalian Physiology: What Diurnal Rodent Models Are Telling Us

Author:

Mendoza Jorge

Abstract

Natural sunlight permits organisms to synchronize their physiology to the external world. However, in current times, natural sunlight has been replaced by artificial light in both day and nighttime. While in the daytime, indoor artificial light is of lower intensity than natural sunlight, leading to a weak entrainment signal for our internal biological clock, at night the exposure to artificial light perturbs the body clock and sleep. Although electric light at night allows us “to live in darkness”, our current lifestyle facilitates nighttime exposure to light by the use, or abuse, of electronic devices (e.g., smartphones). The chronic exposure to light at nighttime has been correlated to mood alterations, metabolic dysfunctions, and poor cognition. To decipher the brain mechanisms underlying these alterations, fundamental research has been conducted using animal models, principally of nocturnal nature (e.g., mice). Nevertheless, because of the diurnal nature of human physiology, it is also important to find and propose diurnal animal models for the study of the light effects in circadian biology. The present review provides an overview of the effects of light at nighttime on physiology and behavior in diurnal mammals, including humans. Knowing how the brain reacts to artificial light exposure, using diurnal rodent models, is fundamental for the development of new strategies in human health based in circadian biology.

Funder

Agence Nationale de la Recherche

Centre National de la Recherche Scientifique

Institut Danone France-Fondation pour la Recherche Médicale Consortium

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3