Generative Models for Periodicity Detection in Noisy Signals

Author:

Barnett Ezekiel1,Kaiser Olga1,Masci Jonathan1ORCID,Wit Ernst C.2ORCID,Fulda Stephany3ORCID

Affiliation:

1. NNAISENSE, 6900 Lugano, Switzerland

2. Institute of Computing, Università della Svizzera Italiana, 6962 Lugano, Switzerland

3. Sleep Medicine Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland

Abstract

We present the Gaussian Mixture Periodicity Detection Algorithm (GMPDA), a novel method for detecting periodicity in the binary time series of event onsets. The GMPDA addresses the periodicity detection problem by inferring parameters of a generative model. We introduce two models, the Clock Model and the Random Walk Model, which describe distinct periodic phenomena and provide a comprehensive generative framework. The GMPDA demonstrates robust performance in test cases involving single and multiple periodicities, as well as varying noise levels. Additionally, we evaluate the GMPDA on real-world data from recorded leg movements during sleep, where it successfully identifies expected periodicities despite high noise levels. The primary contributions of this paper include the development of two new models for generating periodic event behavior and the GMPDA, which exhibits high accuracy in detecting multiple periodicities even in noisy environments.

Publisher

MDPI AG

Reference28 articles.

1. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms;Welch;IEEE Trans. Audio Electroacoust.,1967

2. Priestley, M.B. (1981). Spectral Analysis and Time Series: Univariate Series, Academic Press.

3. Madsen, H. (2007). Time Series Analysis, CRC Press.

4. Mitsa, T. (2010). Temporal Data Mining, CRC Press.

5. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., and Ljung, G.M. (2015). Time Series Analysis: Forecasting and Control, John Wiley & Sons.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3