Performance of Adaptive Unstructured Mesh Modelling in Idealized Advection Cases over Steep Terrains

Author:

Li Jinxi,Zheng Jie,Zhu Jiang,Fang Fangxin,Pain Christopher.,Steppeler Jürgen,Navon Michael,Xiao HangORCID

Abstract

Advection errors are common in basic terrain-following (TF) coordinates. Numerous methods, including the hybrid TF coordinate and smoothing vertical layers, have been proposed to reduce the advection errors. Advection errors are affected by the directions of velocity fields and the complexity of the terrain. In this study, an unstructured adaptive mesh together with the discontinuous Galerkin finite element method is employed to reduce advection errors over steep terrains. To test the capability of adaptive meshes, five two-dimensional (2D) idealized tests are conducted. Then, the results of adaptive meshes are compared with those of cut-cell and TF meshes. The results show that using adaptive meshes reduces the advection errors by one to two orders of magnitude compared to the cut-cell and TF meshes regardless of variations in velocity directions or terrain complexity. Furthermore, adaptive meshes can reduce the advection errors when the tracer moves tangentially along the terrain surface and allows the terrain to be represented without incurring in severe dispersion. Finally, the computational cost is analyzed. To achieve a given tagging criterion level, the adaptive mesh requires fewer nodes, smaller minimum mesh sizes, less runtime and lower proportion between the node numbers used for resolving the tracer and each wavelength than cut-cell and TF meshes, thus reducing the computational costs.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3