Inhomogeneous Microstructure Evolution of 6061 Aluminum Alloyat High Rotating Speed Submerged Friction Stir Processing

Author:

Peng Yuchen,Xie Zonghua,Su Changchao,Zhong Yuefang,Tao Zushan,Zhuang Dongyang,Zeng Jiahui,Tang HongqunORCID,Xu ZhengbingORCID

Abstract

An inhomogeneous microstructure induced by high rotating speed submerged friction stir processing (HRS-SFSP) on 6061 aluminum alloy was researched in detail.The microstructures of the aluminum alloy processing zone were characterized by electron backscattered diffraction (EBSD) and transmission electron microscope (TEM) qualitatively and quantitatively.The results show that the recrystallization proportion in the inhomogeneous structure of the processing zone is 14.3%, 37.8% and 35.9%, respectively. Different degrees of grain deformation can affect the dislocation and lead to the formation of a plastic–elastic interface. At the same time, the second-phase particles in the processing zone were inhomogeneity and relatively, which further promotes the plastic–elastic interface effect. The plastic–elastic interface can significantly improve the strength of aluminum alloy, whileat the same time, rely on recrystallized grains to provide enough plasticity. When the rotation speed was 3600 r/min, the strength and ductility of the aluminum alloy after HRS-SFSP were increased by 48.7% and 10.2% respectively compared with that of BM. In all, the plastic–elastic interface can be formed by using high rotating speed submerged friction stir processing, and the strength-ductility synergy of aluminum alloy can be realized at the plastic–elastic interface.

Funder

National Natural Science Foundation of China

Key Projects of Regional Innovative Cooperative Development Foundation from NSFC

Major Science and Technology Project of Guangxi

Science and Technology Major Project of Nanning, Guangxi

Innovation Project of Guangxi Graduate Education

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3