Ensemble Machine-Learning-Based Prediction Models for the Compressive Strength of Recycled Powder Mortar

Author:

Fei Zhengyu,Liang ShixueORCID,Cai Yiqing,Shen YuanxieORCID

Abstract

Recycled powder (RP) serves as a potential and prospective substitute for cementitious materials in concrete. The compressive strength of RP mortar is a pivotal factor affecting the mechanical properties of RP concrete. The application of machine learning (ML) approaches in the engineering problems, particularly for predicting the mechanical properties of construction materials, leads to high prediction accuracy and low experimental costs. In this study, 204 groups of RP mortar compression experimental data are collected from the literature to establish a dataset for ML, including 163 groups in the training set and 41 groups in the test set. Four ensemble ML models, namely eXtreme Gradient-Boosting (XGBoost), Random Forest (RF), Light Gradient-Boosting Machine (LightGBM) and Adaptive Boosting (AdaBoost), were selected to predict the compressive strength of RP mortar. The comparative results demonstrate that XGBoost has the highest prediction accuracy when the a10-index, MAE, RMSE and R2 of the training set are 0.926, 1.596, 2.155 and 0.950 and the a10-index, MAE, RMSE and R2 of the test set are 0.659, 3.182, 4.285 and 0.842, respectively. SHapley Additive exPlanation (SHAP) is adopted to interpret the prediction process of XGBoost and explain the influence of influencing factors on the compressive strength of RP mortar. According to the importance of influencing factors, the order is the mass replacement rate of RP, the size of RP, the kind of RP and the water binder ratio of RP. The compressive strength of RP mortar decreases with the increase in the RP mass replacement rate. The compressive strength of RBP mortar is slightly higher than that of RCP mortar. Machine learning technologies will benefit the construction industry by facilitating the rapid and cost-effective evaluation of RP material properties.

Funder

Science Foundation of Zhejiang Province of China

National Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3