Use of the Modified Ramberg-Osgood Material Model to Predict Dynamic Modulus Master Curves of Asphalt Mixtures

Author:

Primusz PéterORCID,Tóth CsabaORCID

Abstract

Dynamic modulus master curves are usually constructed by using sigmoid functions, but the coefficients of these functions are not independent of each other. For this reason, it is not possible to clearly identify their physical mean. Another way of describing the dynamic modulus master curves is to choose the Ramberg-Osgood (RAMBO) material model, which is also well-suited for modelling the cyclic behaviour of soils. The Ramberg-Osgood model coefficients are completely independent of each other, so the evaluation of the fitted curve is simple and straightforward. This paper deals with the application of the Ramberg-Osgood material model compared to the usual techniques for constructing a master curve, determining the accuracy in describing the material behaviour of asphalt mixtures, and seeking any surplus information that cannot be derived by traditional techniques. Because the dynamic modulus and phase angle master curves are strictly related, in the present study, the asymmetric bell-shaped frequency curve of Toranzos was used to describe the phase angle for four types of asphalt mixtures (RmB, PmB, RA, and NB). The results show that the RAMBO model is a good alternative to the sigmoid function in describing the master curve of the dynamic modulus. We successfully used the Toranzos asymmetric bell-shaped frequency curve to describe the phase angle master curve. We also found a promising relationship between the independent RAMBO model parameters and the physical properties of the investigated binders, but this requires further research.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3