Abstract
Numerous synthetic techniques for the fabrication of porous metal electrodes were developed in recent decades. A very promising and facile route is the 3D printing of structures, which can be designed directly on the computer first. However, the current techniques allow structures to be printed with a resolution down to 20 µm, which is still quite rough regarding tuning the pore distribution and diameter of electrode materials for potential applications. For the first time, a laser-induced forward transfer (LIFT) process was used to 3D print metal voxels on a solid surface, resulting in a porous electrocatalytically active gold (Au) electrode film. Porous Au electrodes produced using LIFT showed an increase in the electrochemically active surface area (SA) by a factor of four compared with a sputtered dense Au film when characterized using cyclic voltammetry (CV) in Ar-saturated 0.1 M KOH. Therefore, the LIFT process can be considered very promising for the printing of ordered porous electrodes with high surface areas for electrochemical applications.
Funder
Investitions- und Förderbank Niedersachsen
Open Access Publication Funds of Technische Universität Braunschweig
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献