A Study of Strength Parameter Evolution and a Statistical Damage Constitutive Model of Cemented Sand and Gravel

Author:

Ren Honglei,Cai Xin,Wu Yingli,Jing Peiran,Guo Wanli

Abstract

Cemented sand and gravel (CSG) has a wide range of applications in dam construction, and its properties are between rockfill and roller compacted concrete (RCC). A difference in gel content will result in a variance in CSG’s structure and mechanical properties. To investigate the intricate structural mechanical properties of CSG, this study conducted a series of laboratory tests and associated discrete element analyses. Accordingly, the evolution law of the strength parameters of CSG is explored and a statistical damage constitutive model suitable for CSG is established. The main contributions of this study are as follows: (1) The failure mechanism of the CSG was described from the microscopic level, and the evolution law of the strength parameter cohesion and friction angle of the CSG was analyzed and summarized. (2) Based on the particle flow model, the energy development law and the spatiotemporal distribution law of acoustic emission (AE) provide illustrations of the strain hardening–softening transition features and the interaction between cohesion and friction of CSG. (3) The evolution function between the strength parameter and the strain softening parameter was built, and the critical strain softening parameter was determined by the microcrack evolution law of the particle flow model. (4) The accuracy of the evolution curve was confirmed by comparing it to experimental results. (5) Based on the relationship between cohesion loss and material damage, a statistical damage constitutive model was developed using the improved Mohr–Coulomb strength criterion as the micro strength function. The constitutive model can accurately describe the stress–strain curves of CSG with different gel content. Furthermore, the model reflects the strain hardening–softening properties of CSG and reveals the relationship between the weakening of cohesion and material damage at the microscopic level. These findings provide valuable guidelines for investigating the damage laws and microcosmic failure features of CSG and other relevant materials.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for Central Public Welfare Research Institutes

Publisher

MDPI AG

Subject

General Materials Science

Reference60 articles.

1. Raphael, J.M. (1970). The Optimum Gravity Dam, Rapid Construction of Concrete Dams, ASCE.

2. The Faced Symmetrical Hardfill Dam: A New Concept for RCC;Londe;Int. Water. Power. Dam. Constr.,1992

3. A novel reliability-based method of calibrating safety factor: Application to the cemented sand and gravel dams;Hao;Eng. Geol.,2022

4. Experimental and Theoretical Investigation on Dynamic Performance of Cemented Sand and Gravel Material;Zhang;Sci. Adv. Mater.,2018

5. Modelling of ageing effects on the elasto-viscoplastic behaviour of geomaterial;Tatsuoka;Soils Found.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3