A Novel Multi-Sensor Fusion Algorithm Based on Uncertainty Analysis

Author:

Xue HaobaiORCID,Zhang MaomaoORCID,Yu Peining,Zhang Haifeng,Wu GuozhuORCID,Li YiORCID,Zheng XiangyuanORCID

Abstract

During the research and development of multiphase flowmeters, errors are often used to evaluate the advantages and disadvantages of different devices and algorithms, whilst an in-depth uncertainty analysis is seldom carried out. However, limited information is sometimes revealed from the errors, especially when the test data are scant, and this makes an in-depth comparison of different algorithms impossible. In response to this problem, three combinations of sensing methods are implemented, which are the “capacitance and cross-correlation”, the “cross-correlation and differential pressure” and the “differential pressure and capacitance” respectively. The analytical expressions of the gas/liquid flowrate and the associated standard uncertainty have been derived, and Monte Carlo simulations are carried out to determine the desired probability density function. The results obtained through these two approaches are basically the same. Thereafter, the sources of uncertainty for each combination are traced and their respective variations with flowrates are analyzed. Further, the relationship between errors and uncertainty is studied, which demonstrates that the two uncertainty analysis approaches can be a powerful tool for error prediction. Finally, a novel multi-sensor fusion algorithm based on the uncertainty analysis is proposed. This algorithm can minimize the standard uncertainty over the whole flowrate range and thus reduces the measurement error.

Funder

National Natural Science Foundation of China

China National Key Research Scheme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3